Exercise 13

Use the method of undetermined coefficients to find the general solution for the following second order ODEs:

$$
u^{\prime \prime}-u^{\prime}=1
$$

Solution

This is an inhomogeneous ODE, so the general solution is the sum of the complementary and particular solutions.

$$
u=u_{c}+u_{p}
$$

The complementary solution is the solution to the associated homogeneous equation,

$$
u_{c}^{\prime \prime}-u_{c}^{\prime}=0 .
$$

This is a linear ODE with constant coefficients, so the solution will be of the form $u_{c}=e^{r x}$.

$$
u_{c}=e^{r x} \quad \rightarrow \quad u_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad u_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Substituting these into the equation gives us

$$
r^{2} e^{r x}-r e^{r x}=0 .
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-r=0
$$

Factor the left side.

$$
r(r-1)=0
$$

$r=0$ or $r=1$, so the complementary solution is

$$
u_{c}(x)=C_{1}+C_{2} e^{x} .
$$

Now we turn our attention to the particular solution. Because the inhomogeneous term, 1 , is a constant, the particular solution should be chosen so that the higher derivatives vanish but the smallest derivative remains, i.e. $u_{p}=A x$. Plugging this form into the ODE yields $-A=1$, which means $A=-1$. Thus, $u_{p}=-x$. Therefore, the general solution to the ODE is

$$
u(x)=C_{1}+C_{2} e^{x}-x .
$$

We can check that this is the solution. The first and second derivatives are

$$
\begin{aligned}
u^{\prime} & =C_{2} e^{x}-1 \\
u^{\prime \prime} & =C_{2} e^{x}
\end{aligned}
$$

Hence,

$$
u^{\prime \prime}-u^{\prime}=C_{2} e^{x}-\left(C_{2} e^{x}-1\right)=1,
$$

which means this is the correct solution.

